Sample Syllabi – Subject to Change Mathematical and Computational Research in Biological Sciences

An Introductory Hands-on Course in Application of Quantitative Methods in Biology

Instructor: Esmael J. Haddadian, Ph.D.

Lectures:	MTWRF: 9:30-11:00 AM
Computer Labs:	MTWRF: 12:30-3:30 PM

Course description and objectives: Using computation to model and study biological systems is one of the leading edges of current scientific research. This course is designed to provide a stimulating introduction to the application of computation to model and study biological systems. In this hands-on exploration of the latest techniques, students will learn how macromolecules, such as DNA, RNA, and proteins, perform their functions and how to visualize and quantify their behavior. This course will provide an introduction to the basics of computer coding for biological data analysis, and how to apply cutting-edge high performance computation to biological questions using the super computers at the University of Chicago Research Computing Center (RCC). Students will be instructed on how to use the internet to do literature searches, how to prepare a scientific poster and how to plan and deliver an oral presentation.

Grading Components

- 26% Computer lab reports
- 17% Exam-1
- 17% Exam-2
- 10% Group projects, class presentations/participation
- 30% Final project poster

Final Project: students will use the super computer Midway to process and analyze whole-exome next generation sequencing data. The exome is the part of the genome formed by exons, the sequences which when transcribed remain within the mature RNA after introns are removed by RNA splicing. Exome sequencing is a process by which the DNA from canonical coding regions (genes) is selectively captured and sequenced. Using state of the art tools, students will annotate large samples of exomes from the 1000 genome project in order to identify disease-relevant variants. They will subsequently prepare about their findings.

Lab Software:

R:	http://www.r-project.org
R-studio:	http://www.rstudio.com
Unix commands:	https://kb.iu.edu/d/afsk
	http://mally.stanford.edu/~sr/computing/basic-unix.html
VMD is free software	that can be downloaded from
http://www.ks.uiuc.ec	lu/Development/Download/download.cgi?PackageName=VMD
VMD tutorial	
http://www.ks.uiuc.ed	hu/Training/Tutorials/ymd/tutorial-html/index.html

Textbooks: Scans of these book's chapters will be available on Canvas

1. Campbell, Biology (11th edition), Pearson Benjamin Cummings Publishers. ISBN: 978-0-13-409341-3.

2. Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and analytical Tools. Supratim Choudhuri. ISBN: 978-0-12-410471-6.

3. Understanding Bioinformatics. Marketa Zvelebil and Jeremy O. Baum. ISBN: 978-0-8153-4024-9

Week 1

Lectures:

The chemical context of life Water and life Carbon and the molecular diversity of life The structure and function of large biological molecules Genomic technologies

Labs:

An introduction to computer programing An introduction to R, a free software environment for statistical computing and graphics Visualizing macromolecules in 3D

Activities:

Visiting DNA sequencing and genotyping facility

Week 2

Lectures:

Amino acids, Proteins Biological sequence alignment and analysis An introduction to high performance computation and its application in biological sciences

Labs:

Writing an open reading frame code (ORF) to identify the coding part of a given DNA DNA/protein sequence alignment and analysis Introduction to UNIX commands as gateway to supercomputers

Activities:

Computational biology in the news, presentations on a topic in computational/ quantitative biology

Week 3

Lectures: Genome annotation Biological data bases Human Genetic Diseases

Labs:

Analyzing and annotating a large human genome data using the supercomputer Midway

Activities:

Visiting the university data center (supercomputer Midway) Poster presentations

Topic & Reading

The chemical context of life Water and life Book: Chapters 2, 3, Campbell biology	Intro-Programing-1: Introduction to R
Carbon and the molecular diversity of life The structure and function of large biological molecules <i>Book: Chapters 4 and 5, Campbell biology</i>	Intro-Programing-2: Vectors and matrices in R
The structure and function of large biological molecules <i>Continued, Chapter 5, Campbell biology</i>	Intro-Programing-3: Lists, Data frames, and Functions
The molecular base of inheritance: DNA and RNA Book: Chapters 16, Campbell biology	Intro-Programing-4: Graphing in R
Genomic technologies Book: Chapter 20, Campbell biology	Visualizing Macromolecules: Introduction to Vmd-1 Visiting DNA sequencing and genotyping facility
Amino acids, Proteins Chapter 2 Understanding Bioinformatics Exam-1	Introduction to Vmd-2 Open reading frame code, part-1
Sequence alignment and similarity Book: Chapter 6, Bioinformatics for Beginners Chapter 2 Understanding Bioinformatics	Open reading frame code, part-2 Pairwise sequence alignment
Sequence alignment and similarity (continued) Book: Chapter 6, Bioinformatics for Beginners Chapter 2 Understanding Bioinformatics	Multiple sequence alignment
An introduction High performance computation-1	Connecting to the supercomputer <i>Midway</i> Introduction to Unix
Genome annotation An introduction High performance computation-2 Exam-2	Genome annotation-1 Visiting university data center (super computer Midway)
Data and databases search Book: Chapter 5, Bioinformatics for Beginners Chapter 3 Understanding Bioinformatics	Genome annotation-2
Team poster preparation	Poster Preparation
Poster presentations	No-Lab